やや微積分の出題の割合が高い年度もあるが、出題分野が年度によって変動するので、幅広く勉強しておく必要がある。難易度も標準以上の良問が多く、典型的な問題だけでなく思考力を要する問題も出題されている。パターン的にならず、深く考えて問題を解く癖をつけておこう。

解答方式	時間	大問数	難易度
全問記述形式	120分	4 問	標準~やや難

■設問別分析

大問	範囲	出題分野	形式	難易度
1	数学 B	ベクトル	交点のベクトル表示と三角形の最大最	標準
			小	
2	数学Ⅲ	微分法	方程式の解の個数	標準
3	数学Ⅲ	微分法	対数で表された不等式	やや難
			方程式の整数解	
4	数学Ⅲ	微分法	三角関数の方程式	やや難
		積分法	面積、回転体の体積	

■最新問題 ポイント解説

大問1

 \triangle QMN は直接計算ができないので、周りの 3 つの三角形を引くことで求める。 最大値に関しては、微分を用いても良いが、分母、分子共に t(t-1)が含まれることに注 目して、t(t-1)=x と置くと、解きやすくなる。

大問2

定数分離を用いて、解の個数を求めればよい。(1)がヒントとなっており、区間を分けて考えることで、考えやすくなる。

大問3

関数化して、最大値を求めればよいことに気づけるかが鍵となる。ヒントにある e>2.7 を使うために、左辺が e を用いた式で評価することに気づこう。

大問4

三角関数の変形に慣れておかなければ、(1)から解けない可能性がある。tan を求めたいので、どの変形を用いたら tan の式にできるかをじっくりと考えてみよう。また、

の変形を用いて、面積、体積も求めていく。 \tan と $1/\cos^2$ の関係を再確認できる良い問題である。